Extended Tree Augmented Naive Classifier
نویسندگان
چکیده
This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds’ algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning score function in a very efficient way (quadratic in the number of features, the same complexity as learning TANs). A range of experiments show that we obtain models with better accuracy than TAN and comparable to the accuracy of the state-of-the-art classifier averaged one-dependence estimator.
منابع مشابه
Averaged Extended Tree Augmented Naive Classifier
This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN), which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN) and Averaged One-Dependence Estimator (AODE) classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computatio...
متن کاملLearning extended tree augmented naive structures
This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds’ algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning...
متن کاملA New Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes Classifier for Coping with Gene Ontology-based Features
The Tree Augmented Naı̈ve Bayes classifier is a type of probabilistic graphical model that can represent some feature dependencies. In this work, we propose a Hierarchical Redundancy Eliminated Tree Augmented Naı̈ve Bayes (HRE–TAN) algorithm, which considers removing the hierarchical redundancy during the classifier learning process, when coping with data containing hierarchically structured feat...
متن کاملLearning the Tree Augmented Naive Bayes Classifier from incomplete datasets
The Bayesian network formalism is becoming increasingly popular in many areas such as decision aid or diagnosis, in particular thanks to its inference capabilities, even when data are incomplete. For classification tasks, Naive Bayes and Augmented Naive Bayes classifiers have shown excellent performances. Learning a Naive Bayes classifier from incomplete datasets is not difficult as only parame...
متن کاملTractable Bayesian Learning of Tree Augmented Naive Bayes Models
Bayesian classifiers such as Naive Bayes or Tree Augmented Naive Bayes (TAN) have shown excellent performance given their simplicity and heavy underlying independence assumptions. In this paper we introduce a classifier taking as basis the TAN model and taking into account uncertainty in model selection. To do this we introduce decomposable distributions over TANs and show that they allow the e...
متن کامل